Contribution to Active and Passive Control of Flow around a Cylinder

ثبت نشده
چکیده

This numerical study aims to develop a coupled, passive and active control strategy of the flow around a cylinder of diameter D, and Re=4000. The strategy consists to put a cylindrical rod in front of a deforming cylinder. The quasielliptical deformation of cylinder follow a sinusoidal law in order to reduce the drag force. To analyze the evolution of unsteady vortices, the Large Eddy Simulation approach is used in this 2D simulation, carried out using ANSYS – Fluent. The movement of deformation is reproduced using an internal subroutine, introduced in the form of a User Defined Function UDF. Two diameters of the rod were tested for a rod placed at a distance L = 3 ×d, with an amplitudes of deformation A = 5%, A = 25% and A = 50% of the cylinder diameter, the frequency of deformation take the values fd = 1fn, 5fn and 8fn, which fn represents the naturel vortex shedding frequency. The results show substantial changes in the flow behavior and for a rod of 6mm (1% D) with amplitude A = 25%, and with a 2fn frequency, drag reduction of 60% was recorded. Keywords—CFD, Flow separation, control, Boundary layer, rod, Cylinder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Study of Compound Control Method around a Cylinder

In this work, the compound flow control method (passive and active) has been described. EHD actuators as wire-plate (active) and splitter plate (passive) were coupled and applied to control fluid flow and heat transfer around cylinder in cross flow. Investigation consists of the interaction between electric field, fluid flow and temperature field. Experimental tests included various positions o...

متن کامل

Galloping and VIV control of square-section cylinder utilizing direct opposing smart control force

An adaptive fuzzy sliding mode controller (AFSMC) is adopted to reduce the 2D flow-induced vibration of an elastically supported square-section cylinder, free to oscillate in stream-wise andtransverse directions in both lock-in and galloping regions. The AFSMC strategy consists of a fuzzy logic inference system intended to follow a sliding-mode controller (SMC), and a robust control syste...

متن کامل

Thermal Field Around a Circular Cylinder with Periodic Vortex Shedding

A numerical study is carried out to investigate the laminar forced convection heat transfer from a circular cylinder. The fluid is assumed to be incompressible, the Reynolds number ranged from 0.1 to 1000, and the Prandtl number was equal to 0.7. The range of study includes heat transfer in creeping flow (Re40). The equations were discretized by a control-volume-based finite difference techniqu...

متن کامل

Semi-active Control of Building Structures using Variable Stiffness Device and Fuzzy Logic

Semi-active control devices, also called “Intelligent” control devices, constitute the positive aspects of both the passive and active control devices. A semi-active control strategy is similar to the active control strategy, but this control device has been shown to be more energy-efficient than active devices. A particular type of semi-active control device, the Variable Stiffness Device (VSD...

متن کامل

Experimental Study of Heat Transfer around a Cylinder in Presence of Electric Field

In this paper, effects of EHD actuators on hydrodynamic behavior and heat transfer of air flow over a circular cylinder were considered. Pressure and temperature distributions around the cylinder were measured in presence of wire-plate EHD actuators. The Reynolds number based on cylinder diameter (d) were 3500, 7000. Experiments were performed for various configurations. Based on obtained resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014